Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 103(2): 151415, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631098

RESUMO

The 3-mercaptopyruvate sulfurtransferase (MPST) is a protein persulfidase, occurring mainly in mitochondria. Although function of this protein in cancer cells has been already studied, no clear outcome can be postulated up to now. Therefore, we focused on the determination of function of MPST in colon (HCT116 cells)/colorectal (DLD1 cells) cancers. In silico analysis revealed that in gastrointestinal cancers, MPST together with its binding partners can be either of a high risk or might have a protective effect. Silencing of MPST gene resulted in decreased ATP, while acetyl-CoA levels were elevated. Increased apoptosis was detected in cells with silenced MPST gene, which was accompanied by decrease in mitochondrial membrane potential, but no changes in IP3 receptor's protein. Mitochondria underwent activation of fission and elevated DRP1 expression after MPST silencing. Proliferation and migration of DLD1 and HCT116 cells were markedly affected, showing the importance of MPST protein in colon/colorectal cancer development.

2.
Sci Rep ; 14(1): 3043, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321096

RESUMO

Immune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80). Our docking studies revealed strong binding energy values for quinestrol, quercetin, and bazedoxifene, indicating their potential to inhibit PD-1 and CTLA-4. Quercetin and bazedoxifene, known to modulate EGFR and IL-6R alongside estrogen receptors, can influence the immune checkpoint functionality. We discuss the impact of SERMs on PD-1 and CTLA-4, suggesting that these SERMs could have therapeutic effects through immune checkpoint inhibition. This study highlights the potential of SERMs as inhibitory ligands for immune checkpoint proteins, emphasizing the importance of considering PD-1 and CTLA-4 inhibition when evaluating SERMs as therapeutic agents. Our findings open new avenues for cancer immunotherapy by exploring the interaction between various SERMs and immune checkpoint pathways.


Assuntos
Proteínas de Checkpoint Imunológico , Neoplasias , Humanos , Antígeno CTLA-4 , Antígeno B7-H1 , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Receptor de Morte Celular Programada 1 , Moduladores de Receptor Estrogênico , Quercetina , Imunoterapia , Neoplasias/terapia
3.
Bratisl Lek Listy ; 124(2): 84-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38219060

RESUMO

OBJECTIVES: Cisplatin is a widely used anticancer drug for the treatment of many solid cancers. DNA damage is thought to be the key mechanism of cisplatin's anticancer activity. However, cisplatin may also affect cellular metabolism. The aim of this study was to determine the effect of cisplatin on the types of ATP production (OXPHOS versus glycolysis) and their rate in prostate cancer cells and to determine the potentially protective effect of autophagy and amino acids during cisplatin treatment. We also wanted to investigate the potential synergy between the metabolic effects of cisplatin on ATP production and the inhibition of autophagy. METHODS: Cisplatin treatment can significantly affect the metabolism of cancer cells. Important metabolic pathways can be altered, leading to changes in energy production and nutrient utilization. Autophagy and amino acid pool modulations can serve as protective mechanisms significantly affecting tumor cell survival under metabolic stress caused by anticancer treatment. By enabling the recycling of amino acids, autophagy helps cancer cells maintain cellular homeostasis and overcome nutrient limitations. Thus, inhibition of autophagy could have a supportive effect on the metabolic effects of cisplatin. RESULTS: After cisplatin treatment, ATP production by way of OXPHOS was significantly decreased in 22Rv1 and PC-3 cells. On the other hand, ATP production by glycolysis was not significantly affected in 22Rv1 cells. DU145 cells with dysfunctional autophagy were the most sensitive to cisplatin treatment and showed the lowest ATP production. However, short-term autophagy inhibition (24h) by autophinib or SAR405 in 22Rv1 and PC-3 cells did not alter the effect of cisplatin on ATP production. Levels of some amino acids (arginine, methionine) significantly affected the fitness of cancer cells. CONCLUSION: Persistent defects of autophagy can affect the metabolic sensitivity of cancer cells due to interference with arginine metabolism. Amino acids contained in the culture medium had an impact on the overall effect of cisplatin (Fig. 3, Ref. 38).


Assuntos
Cisplatino , Neoplasias da Próstata , Pirazóis , Piridinas , Pirimidinas , Pirimidinonas , Masculino , Humanos , Cisplatino/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Autofagia , Linhagem Celular Tumoral , Aminoácidos/farmacologia , Aminoácidos/metabolismo , Trifosfato de Adenosina/farmacologia , Arginina
4.
Int Wound J ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858977

RESUMO

The chronic venous disease covers a wide spectrum of venous disorders that are characterized by severely impaired blood return that primarily affects veins in the lower extremities. Morphological and functional abnormalities of the venous system led to chronic venous insufficiency (CVI), and present as leg heaviness/achiness, edema, telangiectasia, and varices. The term 'chronic venous insufficiency' (CVI) refers to a disease of greater severity. Venous dysfunction is associated with venous hypertension and is associated with venous reflux due to poorly functioning or incompetent venous valves, which ultimately reduces venous return, leading to a cascade of morphological, physiological, and histologic abnormalities such as blood pooling, hypoxia, inflammation, swelling, skin changes (lipodermatosclerosis), and in severe cases, venous leg ulcers (VLU). This review summarizes recent knowledge about the aetiology, risk factors, and pathophysiology of VLU and compared the possibilities of their treatment.

5.
Biomed Pharmacother ; 166: 115324, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37598475

RESUMO

TET proteins (methylcytosine dioxygenases) play an important role in the regulation of gene expression. Dysregulation of their activity is associated with many serious pathogenic states such as oncological diseases. Regulation of their activity by specific inhibitors could represent a promising therapeutic strategy. Therefore, this review describes various types of TET protein inhibitors in terms of their inhibitory mechanism and possible applicability. The potential and possible limitations of this approach are thoroughly discussed in the context of TET protein functionality in living systems. Furthermore, possible therapeutic strategies based on the inhibition of TET proteins are presented and evaluated, especially in the field of oncological diseases.


Assuntos
Dioxigenases , Dioxigenases/antagonistas & inibidores
6.
Front Oncol ; 13: 1178021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483514

RESUMO

Background: Cystathionine ß-synthase (CBS), one of three enzymes that endogenously produce hydrogen sulfide, is extensively studied for its relevance in the cells of various tumors. In our previous work, we observed that the immunofluorescence pattern of CBS is very similar to that of tubulin and actin. Therefore, we focused on the potential interaction of CBS with cytoskeletal proteins ß-actin and ß-tubulin and the functional relevance of the potential interaction of these proteins in colorectal carcinoma cell lines. Methods: To study the potential interaction of CBS with cytoskeletal proteins and its functional consequences, a CBS-knockout DLD1 (DLDx) cell line was established by using the CRISPR/Cas9 gene editing method. The interaction of the selected cytoskeletal protein with CBS was studied by immunoprecipitation, Western blot analysis, immunofluorescence, and proximity ligation assay. The functional consequences were studied by proliferation and migration assays and by generation of xenografts in SCID/bg mice. Results: We have found that CBS, an enzyme that endogenously produces H2S, binds to cytoskeletal ß-tubulin and, to a lesser extent, also to ß-actin in colorectal carcinoma-derived cells. When CBS was knocked out by the CRISPR/Cas9 technique (DLDx), we observed a de-arranged cytoskeleton compared to the unmodified DLD1 cell line. Treatment of these cells with a slow sulfide donor GYY4137 resulted in normal organization of the cytoskeleton, thus pointing to the role of CBS in microtubule dynamics. To evaluate the physiological importance of this observation, both DLD1 and DLDx cells were injected into SCID/bg mice, and the size and mass of the developed xenografts were evaluated. Significantly larger tumors developed from DLDx compared to the DLD1 cells, which correlated with the increased proliferation of these cells. Conclusions: Taken together, in colorectal cancer DLD1 cells, CBS binds to the cytoskeleton, modulates microtubule dynamics, and thus affects the proliferation and migration in the colorectal carcinoma stable cell line.

7.
Aquat Toxicol ; 259: 106537, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060818

RESUMO

Non-steroidal anti-inflammatory drugs (NSAID) are recently monitored in the aquatic environment. Naproxen (NPX), paracetamol (PCT) and their transformation products can influence the biochemical and physiological processes at the sub-cellular and cellular levels taking part in the growth and development of plants. This study aimed to compare the effects of NPX and PCT, drugs with different physico-chemical properties, on the growth and photosynthetic processes in Lemna minor during a short-term (7 days) exposure. Although duckweed took up more than five times higher amount of PCT as compared to NPX (275.88 µg/g dry weight to 43.22 µg/g when treated with 10 mg/L), only NPX limited the number of new plants by 9% and 26% under 1 and 10 mg/L, respectively, and increased their dry weight (by 18% under 10 mg/L) and leaf area per plant. A considerable (by 30%) drop in the content of photosynthetic pigments under 10 mg/L treatment by both drugs did not significantly affect the efficiency of the primary processes of photosynthesis. Values of induced chlorophyll fluorescence parameters (F0, FV/FM, ΦII, and NPQ) showed just a mild stimulation by PCT and a negative effect by NPX (by up to 10%), especially on the function of photosystem II and electron transport in both intact duckweed plants and isolated chloroplasts. Lowered efficiency of Hill reaction activity (by more than 10% under 0.1 - 10 mg/L treatments) in isolated chloroplasts suspension proved the only inhibition effect of PCT to primary photosynthetic processes. In intact plants, higher treatments (0.5 - 10 mg/L) by both NPX and PCT induced an increase in RuBisCO content. The results prove that the potential effect of various drugs on plants is hard to generalise.


Assuntos
Araceae , Poluentes Químicos da Água , Acetaminofen/toxicidade , Naproxeno/toxicidade , Poluentes Químicos da Água/toxicidade , Fotossíntese , Clorofila
8.
Toxicology ; 488: 153460, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796712

RESUMO

Cannabidiol (CBD) and cannabigerol (CBG) are the two main non-psychotropic phytocannabinoids with high application potential in drug development. Both substances are redox-active and are intensively investigated for their cytoprotective and antioxidant action in vitro. In this study, we focused on an in vivo safety evaluation and the effect of CBD and CBG on the redox status in rats in a 90-d experiment. The substances were administered orogastrically in a dose of 0.66 mg synthetic CBD or 0.66 mg/1.33 mg CBG/kg/day. CBD produced no changes in the red or white blood count or biochemical blood parameters in comparison to the control. No deviations in the morphology or histology of the gastrointestinal tract and liver were observed. After 90 d of CBD exposure, a significant improvement in redox status was found in the blood plasma and liver. The concentration of malondialdehyde and carbonylated proteins was reduced compared to the control. In contrast to CBD, total oxidative stress was significantly increased and this was accompanied by an elevated level of malondialdehyde and carbonylated proteins in CBG-treated animals. Hepatotoxic (regressive changes) manifestations, disruption in white cell count, and alterations in the ALT activity, level of creatinine and ionized calcium were also found in CBG-treated animals. Based on liquid chromatography-mass spectrometry analysis, CBD/CBG accumulated in rat tissues (in the liver, brain, muscle, heart, kidney and skin) at a low ng level per gram. Both CBD and CBG molecular structures include a resorcinol moiety. In CBG, there is an extra dimethyloctadienyl structural pattern, which is most likely responsible for the disruption to the redox status and hepatic environment. The results are valuable to further investigation of the effects of CBD on redox status and should contribute towards opening up critical discussion on the applicability of other non-psychotropic cannabinoids.


Assuntos
Canabidiol , Canabinoides , Ratos , Animais , Canabidiol/toxicidade , Canabinoides/toxicidade , Cálcio , Oxirredução
9.
Plants (Basel) ; 12(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36840082

RESUMO

Mercury (Hg) content measured in five epiphytic lichen species collected in Slovakia mountain forests ranged from 30 to 100 ng/g DW and was species-specific, decreasing in the order Hypogymnia > Pseudevernia > Usnea > Xanthoria > Evernia prunastri (but polluted sites had no impact on Hg amount in Xanthoria). Evernia was therefore used to study the impact of short-term exogenous Hg (100 µM, 24 h) and possible amelioration of Hg toxicity by nitric oxide (NO) donor sodium nitroprusside (SNP). NO was efficiently released from SNP as detected by two staining reagents and fluorescence microscopy and reduced Hg-induced ROS signal and absorption of Hg by thalli of Evernia prunastri. At the same time, NO ameliorated Hg-induced depletion of metabolites such as ascorbic acid and non-protein thiols, but not of free amino acids. The amount of metabolites, including soluble phenols, was reduced by excess Hg per se. On the contrary, NO was unable to restore Hg-stimulated depletion of chlorophyll autofluorescence but mitigated the decline of some macronutrients (K and Ca). Data confirm that accumulation of Hg in the epiphytic lichens is species-specific and that NO is a vital molecule in Evernia prunastri that provides protection against Hg-induced toxicity with considerable positive impact on metabolic changes.

10.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499062

RESUMO

Cadmium (Cd) or nickel (Ni) were applied as a foliar spray (1 µM solution over one month) to mimic air pollution and to monitor metabolic responses and oxidative stress in the pteridophyte species. Exogenous metals did not affect the metal content of the soil and had relatively little effect on the essential elements in leaves or rhizomes. The amounts of Cd and Ni were similar in treated leaves (7.2 µg Cd or 5.3 µg Ni/g DW in mature leaves compared with 0.4 µg Cd or 1.2 µg Ni/g DW in the respective control leaves), but Ni was more abundant in rhizomes (56.6 µg Ni or 3.4 µg Cd/g DW), resulting in a higher Cd translocation and bioaccumulation factor. The theoretical calculation revealed that ca. 4% of Cd and 5.5% of Ni from the applied solution per plant/pot was absorbed. Excess Cd induced stronger ROS production followed by changes in SOD and CAT activities, whereas nitric oxide (NO) stimulation was less intense, as detected by confocal microscopy. The hadrocentric vascular bundles in the petioles also showed higher ROS and NO signals under metal excess. This may be a sign of increased ROS formation, and high correlations were observed. Proteins and amino acids were stimulated by Cd or Ni application in individual organs, whereas phenols and flavonols were almost unaffected. The data suggest that even low levels of exogenous metals induce an oxidative imbalance, although no visible damage is observed, and that the responses of ferns to metals are similar to those of seed plants or algae.


Assuntos
Adiantum , Gleiquênias , Metais Pesados , Poluentes do Solo , Cádmio/metabolismo , Metais Pesados/metabolismo , Gleiquênias/metabolismo , Adiantum/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/química , Plantas/metabolismo
11.
Front Physiol ; 13: 1030851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505088

RESUMO

Wound healing is a very complex process, where variety of different pathways is activated, depending on the phase of healing. Improper or interrupted healing might result in development of chronic wounds. Therefore, novel approaches based on detailed knowledge of signalling pathways that are activated during acute or chronic cutaneous wound healing enables quicker and more effective healing. This review outlined new possibilities of cutaneous wound healing by modulation of some signalling molecules, e.g., gasotransmitters, or calcium. Special focus is given to gasotransmitters, since these bioactive signalling molecules that can freely diffuse into the cell and exert antioxidative effects. Calcium is an important booster of immune system and it can significantly contribute to healing process. Special interest is given to chronic wounds caused by diabetes mellitus and overcoming problems with the inflammation.

12.
Environ Pollut ; 313: 120178, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116567

RESUMO

The impact of calcium-enriched biochar (BC, containing Ca, Al, Fe and P as dominant elements in the range of 6.9-1.3% with alkaline pH) obtained from sewage sludge (0.1 or 0.5% in the final soil) on cadmium-induced toxicity (final dose of 1.5 mg Cd/kg in control and 4.5 or 16.5 mg Cd/kg soil in low and high Cd treatment) was tested in medicinal plant Matricaria chamomilla. Low Cd dose had typically less negative impact than high Cd dose at the level of minerals and metabolites and the effect of BC doses often differed. Contrary to expectations, 0.5% BC with a high Cd dose increased Cd accumulation in plants about 2-fold. This was reflected in higher signals of reactive oxygen species, but especially the high dose of BC increased the amount of antioxidants (ascorbic acid and non-protein thiols), minerals and amino acids in shoots and/or roots and usually mitigated the negative effect of Cd. Surprisingly, the relationship between BC and soluble phenols was negative at high BC + high Cd dose, whereas the effect of Cd and BC on organic acids (mainly tartaric acid) differed in shoots and roots. Interestingly, BC alone applied to the control soil (1.5 mg total Cd/kg) reduced the amount of Cd in the plants by about 30%. PCA analyses confirmed that metabolic changes clearly distinguished the high Cd + high BC treatment from the corresponding Cd/BC treatments in both shoots and roots. Thus, it is clear that the effect of biochar depends not only on its dose but also on the amount of Cd in the soil, suggesting the use of Ca-rich biochar both for phytoremediation and safer food production.


Assuntos
Cádmio , Poluentes do Solo , Aminoácidos , Ácido Ascórbico , Cádmio/análise , Cálcio/análise , Carvão Vegetal , Minerais , Fenóis/análise , Espécies Reativas de Oxigênio , Esgotos , Solo/química , Poluentes do Solo/análise , Compostos de Sulfidrila
13.
Nutrients ; 14(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684045

RESUMO

Polyunsaturated fatty acids (PUFA) play an important role in reparative processes. The ratio of PUFAs n-3 to n-6 may affect wound healing. The study aimed to evaluate the effect of dietary supplementation with n-3 and n-6 PUFA in two proportions on skin wounds in laboratory rats. Adult male Wistar rats received 20% fat emulsion with a ratio of 1.4:1 (group A) or 4.3:1 (group B) for n-3:n-6 PUFAs at a daily dose of 1 mL/kg. The control group received water under the same conditions. The animals were supplemented a week before and a week after the skin excision performed on the back. The level of wound closure, various parameters of oxidative stress, and plasma fatty acids composition were evaluated. Wound tissue samples were examined by electron microscopy. The administration of fat emulsions led to significant changes in plasma polyunsaturated fatty acid composition. The increased production of reactive nitrogen species, as well as more numerous newly formed blood vessels and a greater amount of highly organized collagen fibrils in both groups A and B may indicate more intensive healing of the skin wound in rats supplemented with polyunsaturated fatty acids in high n-3:n-6 ratio.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos , Animais , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/farmacologia , Masculino , Ratos , Ratos Wistar , Cicatrização
15.
Eur J Pharmacol ; 922: 174875, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314158

RESUMO

Although paclitaxel (PTX) is potent chemotherapeutic agent commonly used in variety of cancers, in colorectal carcinoma its usage is excluded because of low effectivity. Up to now, some experimental attempts were utilized to improve sensitivity of colorectal carcinoma to PTX. We used a slow sulfide donor GYY4137 to increase sensitivity of colorectal carcinoma cells to PTX. As a model of colorectal carcinoma, we utilized three different cell lines - HCT116, SW620 and DLD1. We compared IC50 for PTX and PTX/GYY4137, cell cycle, apoptosis, ATP levels and changes in intracellular pH. We observed significant decrease in IC50 levels in PTX/GYY4137 groups compared to PTX in all three cell lines. PTX arrested cell cycle in G2/M phase. Differences in S phase were observed in HCT116 and DLD1 cells treated with 20 nM PTX/GYY4137, but not in SW620 cell. GYY4137 increased early, but not late phase of apoptosis. This increase was not detected in non-cancer EAHy926 cells. Upregulation of IP3R1 suggested involvement of these receptors in PTX and/or GYY4137 induced apoptosis. We also observed partial ATP depletion and intracellular acidification in PTX treated groups. In PTX/GYY4137 groups of all three cell lines no ATP depletion was detectable and intracellular acidification was lower than in PTX treated groups. Slight differences in all measured parameters were determined among HCT116, SW620 and DLD1 cells, which is probably due to physiological variations in these cells. Taking together, sensitivity of PTX to colorectal carcinoma cell lines could be increased by slow sulfide donor GYY4137, probably through potentiation of apoptosis.


Assuntos
Neoplasias Colorretais , Sulfeto de Hidrogênio , Trifosfato de Adenosina/farmacologia , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Humanos , Sulfeto de Hidrogênio/metabolismo , Morfolinas , Compostos Organotiofosforados , Paclitaxel/farmacologia , Sulfetos/farmacologia , Sulfetos/uso terapêutico
16.
Neoplasma ; 69(2): 264-273, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35144473

RESUMO

Programmed cell death is a basic feature of chemotherapeutic (and also radiotherapeutic) intervention. Induction of cell death in tumor cells aims to kill preferentially the tumor cells, with minimal impact on the normal cells. Although apoptosis is the most obvious type of cell death induced by chemotherapeutics, several other types can also be activated, especially in conditions, where cells are resistant to apoptosis induction. Calcium signaling was shown to play an indisputable role in the activation of different types of cell death. Local increase of the calcium in time and precise place of this increase is secured by calcium transport systems. In this review, we summarized the involvement of some calcium transport systems in apoptosis, autophagy, necroptosis, ferroptosis, and mitophagy during cancer development and treatment.


Assuntos
Ferroptose , Neoplasias , Apoptose , Autofagia , Sinalização do Cálcio , Morte Celular , Humanos , Necroptose , Neoplasias/patologia
17.
J Hazard Mater ; 425: 127894, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986560

RESUMO

Strontium is an unavoidable element occurring in plants due to its abundance in the soil and similarity with calcium. To mimic natural conditions, impacts of additional inorganic (nitrate) or organic (urea and allantoin) nitrogen sources (1 mM of each N form in addition to 3.53 mM N in the basic cultivation solution) or N deficit on strontium-induced changes (100 µM Sr) in the widely used medicinal plant Hypericum perforatum L. were studied. Though various effects of Sr on primary (stimulation of amino acids but depression of most Krebs acids, ascorbic acid and thiols) and secondary metabolites (stimulation of phenols but no change of pseudo/hypericin) or mineral elements were observed (reduction of Ca amount in both shoots and roots), organic N forms often mitigated negative action of Sr or even combined stimulatory impact was observed. Organic N forms also elevated shoot accumulation of Sr while N deficit reduced it. Additional N forms, rather than Sr itself, modulated reactive oxygen species and nitric oxide formation in the root tissue. Germination experiment showed no toxicity of Sr to H. perforatum up to 1 mM Sr and even stimulated accumulation of amino acids and phenols, indicating similar ontogenetic-related responses.


Assuntos
Hypericum , Plantas Medicinais , Nitrogênio , Fenóis , Estrôncio
19.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440733

RESUMO

Flavonoids are common plant natural products able to suppress ROS-related damage and alleviate oxidative stress. One of key mechanisms, involved in this phenomenon is chelation of transition metal ions. From a physiological perspective, iron is the most significant transition metal, because of its abundance in living organisms and ubiquitous involvement in redox processes. The chemical, pharmaceutical, and biological properties of flavonoids can be significantly affected by their interaction with transition metal ions, mainly iron. In this review, we explain the interaction of various flavonoid structures with Fe(II) and Fe(III) ions and critically discuss the influence of chelated ions on the flavonoid biochemical properties. In addition, specific biological effects of their iron metallocomplexes, such as the inhibition of iron-containing enzymes, have been included in this review.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Complexos de Coordenação/química , Flavonoides/química , Ferro/química , Animais , Quelantes/química , Quelantes/farmacologia , Heme/química , Humanos , Íons/química , Íons/metabolismo , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
20.
Environ Sci Pollut Res Int ; 28(5): 6018-6029, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32981019

RESUMO

Titanium-based alloys have established a crucial role in implantology. As material deteriorates overtime, nanoparticles of TiO2 and Ni are released. This study is focused on the impact of TiO2 and Ni nanoparticles with size of 100 nm on cytoskeletal and adhesive changes in human physiological and osteoarthritic osteoblasts. The impact of nanoparticles with concentration of 1.5 ng/mL on actin and tubulin expression and gene expression of FAK and ICAM-1 was studied. The cell size and actin expression of physiological osteoblasts decreased in presence of Ni nanoparticles, while TiO2 nanoparticles caused increase in cell size and actin expression. Both cell lines expressed more FAK as a response to TiO2 nanoparticles. ICAM-1 gene was overexpressed in both cell lines as a reaction to both types of nanoparticles. The presented study shows a crucial role of Ni and TiO2 nanoparticles in human osteoblast cytoskeletal and adhesive changes, especially connected with the osteoarthritic cells. Graphical abstract.


Assuntos
Nanopartículas , Titânio , Adesão Celular , Citoesqueleto , Humanos , Osteoblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...